

ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930


140mm Stranlite Synerg-Eco 7.3N/mm2 Standard

Combines Recycling, Strength and Sustainability

EPD HUB, HUB-1729

Published on 16.08.2024, last updated on 16.08.2024, valid until 16.08.2029

GENERAL INFORMATION

MANUFACTURER

Manufacturer	Plasmor Limited
Address	PO Box 44, Womersley Road, Knottingley, West Yorkshire, WF11 0DN, United Kingdom
Contact details	Technical@plasmor.co.uk
Website	https://www.plasmor.co.uk/

EPD STANDARDS, SCOPE AND VERIFICATION

Program operator	EPD Hub, hub@epdhub.com
Reference standard	EN 15804+A2:2019 and ISO 14025
PCR	EPD Hub Core PCR version 1.1, 5 Dec 2023
Sector	Construction product
Category of EPD	Third party verified EPD
Scope of the EPD	Cradle to gate with options, A4-B1, and modules C1-C4, D
EPD author	Tom Booth - Plasmor
EPD verification	Independent verification of this EPD and data, according to ISO 14025: ☐ Internal verification ☑ External verification
EPD verifier	Imane Uald Lamkaddam as an authorized verifier for EPD Hub

The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

PRODUCT

Product name	Synerg-Eco 7.3N/mm2 Standard
Additional labels	Stranlite
Product reference	140SL07STSOLSE
Place of production	Womersley Road, Knottingley, West Yorkshire, WF11 0DN, United Kingdom
Period for data	May 2022 to May 2023
Averaging in EPD	No averaging
Variation in GWP-fossil for A1-A3	0 %

ENVIRONMENTAL DATA SUMMARY

av i
1 m2
198 kg
8.47E+00
8.47E+00
22.1
80
17.7
0.02

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

Plasmor Limited is a privately owned concrete block and concrete block paving manufacturer supplying a comprehensive range of over 1000 concrete products to the building industry throughout the UK. Established in 1959, the Plasmor Group of companies has grown to be one of Britain's largest independent concrete products manufacturers.

A continual programme of capital investment and new product development contributes to sustained organic growth. Plasmor's commitment to research and development, in house engineering excellence and the deployment of leading-edge technology, has gained the Company recognition as pioneers in the building products industry. Together with the highest levels of customer service through understanding, responsiveness, adaptability and flexibility, customer satisfaction is unrivalled.

PRODUCT DESCRIPTION

Stranlite SYNERG-ECO Standard is the general-purpose building solution for applications in house building and commercial construction. SYNERG-ECO satisfies sustainability and environmental credentials where specified, whilst complying with thermal and acoustic Building Regulations.

Stranlite SYNERG·ECO is available in 100mm & 140mm Standard and Paint Grade finishes. They are plain ended, dark grey in colour and are robust and durable and provide excellent fixability

Further information can be found at https://www.plasmor.co.uk/.

PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass- %	Material origin
Metals	0	
Minerals	100	United Kingdom
Fossil materials	0	
Bio-based materials	0	

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate

Biogenic carbon content in product, kg C	0.00000846999
Biogenic carbon content in packaging, kg C	0

FUNCTIONAL UNIT AND SERVICE LIFE

I ONCHONAL ONLY AND SERVICE EILE	
Declared unit	1 m2
Mass per declared unit	198 kg
Functional unit	1 m2 of an exterior load bearing wall with a defined load bearing capacity of 7.3N/mm2 which fulfils the performance requirements of thermal insulation, sound insulation and fire resistance for a defined reference service life of 150 years.
Reference service life	150 years

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0.1% (1000 ppm).

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

Pro	oduct st	tage		embly age	/ Use stage End of life stage								Use stage					Use stage End of life stage							Beyo the syste ounc es	e m dari
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	2 C3 C		D										
x	х	x	x	x	x	MND	MND	MND	MND	MND	MND	x	x	x	x	x	x									
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstr./demol.	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling								

Modules not declared = MND. Modules not relevant = MNR.

MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

The raw materials (A1) used in block production in Knottingley plant are acquired in United Kingdom and transported by road haulage. Vehicle capacity utilization volume factor is assumed to be 1 which means full load. It may vary but as the role of transportation emission in total results is small and so the variety in load assumed to be negligible. Empty returns are not considered as it is assumed that return trip is used by transportation companies to serve the needs of other clients (A2).

Concrete blocks are made from cement, aggregates, water and (if needed) admixtures. The blocks covered by this EPD have been manufactured where the dry components are thoroughly mixed, water and additives are then included, the mix is then placed onto the mould with aid of complex vibration and weighing systems to form required block dimensions and density. Raw material losses during production are assessed as insignificant (<0.01%). Waste generated during production is returned back into the cycle. Once demoulded, the blocks are cured in specially designed curing chambers. Once cured, blocks are packaged into packs of 64 blocks, strapped and stored on the yard, awaiting release by quality control.

Manufacturing of concrete blocks requires electricity supplied from the grid and natural gas used in blocks curing chambers, for purpose of production (A3). Machinery and equipment are counted as capital good and are not taken into consideration in the calculations. All industrial processes from raw material acquisition and pre-processing, production, are included. Further, water used for cleaning and maintenance of the equipment, transportation and waste streams of the packaging materials used for delivering the raw materials to the factory are omitted since the quantified mass contribution is less than 0.1%. These include ancillary materials in very small amounts and have no serious impact on the emissions of the product. Further, water used for cleaning and maintenance of the equipment, transportation and waste streams of the packaging materials used for delivering the raw materials to the factory are omitted since the quantified mass contribution is less than 0.1%.

The production of capital equipment, construction activities, infrastructure, personnel-related activities, energy and water use related to company management and sales activities are excluded.

TRANSPORT AND INSTALLATION (A4-A5)

Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.

This EPD includes transport of the finished goods into Bow central London via a unique rail freight system from Great Heck (257 km). Material is then distributed from Bow to the merchants / projects, it is assumed for this EPD the project is within the Greater London region in distance of 25 km. Vehicle capacity utilization is assumed to be 100 % which means full load. Empty returns are not taken into account as it is assumed that return trip is used by the transportation company to serve the needs of other clients. Transportation does not cause losses as product are packaged properly.

Installation includes the mortar required (7% per m2), packaging waste generated, and installation loss of 4%, based on a current industry study by MPA, CBA and APA.

PRODUCT USE AND MAINTENANCE (B1-B7)

Aggregate blocks are durable, fire resistant not attacked by vermin or insects, do not introduce harmful substances into the internal environment of buildings and require minimal or no maintenance over the full life of the building. Given the nature of the product and its application, no impacts are associated with the use stage of concrete over the lifetime of the building. However, from the production stage through to construction stage and during the lifetime of the building aggregate blocks will readily carbonate absorbing atmospheric carbon dioxide (B1).

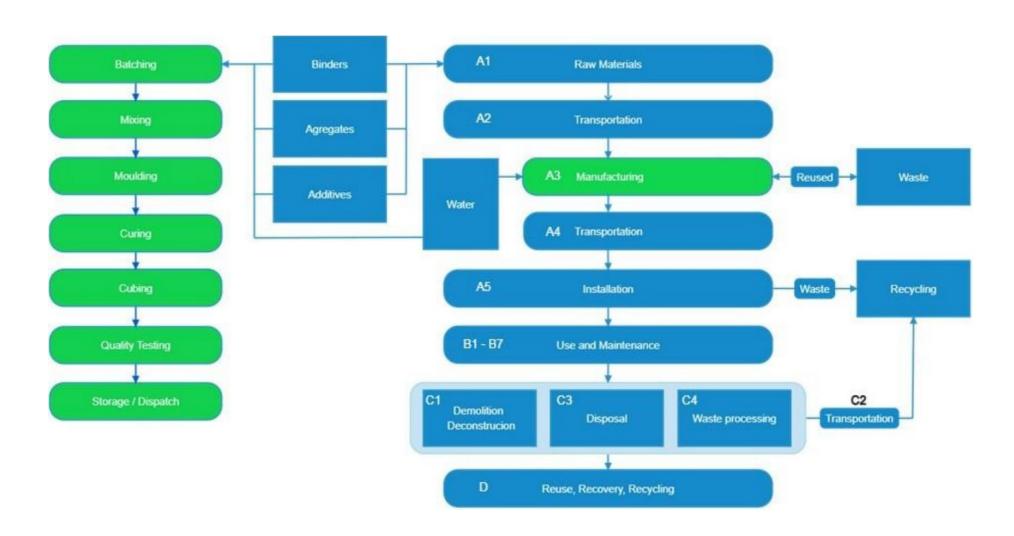
Air, soil, and water impacts during the use phase have not been studied.

PRODUCT END OF LIFE (C1-C4, D)

At the end-of-life, in the demolition phase 100% of the waste is assumed to be collected as separate construction waste. The demolition process consumes energy in the form of diesel fuel used by building machines. Energy consumption of a demolition process is on the average 10 kWh/m2 (Bozdağ, Ö & Seçer, M. 2007). Basing on a Level(s) project, an average mass

of a reinforced concrete building is about 1000 kg/m2. Therefore, energy consumption demolition is assumed to be 10 kWh/1000 kg = 0.01 kWh/kg. The source of energy is diesel fuel used by work machines (C1).

The dismantled concrete blocks are delivered to the nearest construction waste treatment plant. It is estimated that there is no mass loss during the use of the product, therefore the end-of-life product is assumed that it has the same weight with the declared product. Transportation distance to the closest disposal area is estimated as 25 km and the transportation method is lorry which is the most common (C2).


At the waste treatment plant, waste that can be reused, recycled or recovered for energy is separated and diverted for further use. It can be assumed that 100% of the concrete blocks are transported to a waste treatment plant, where the blocks are crushed and separated. About 80% of concrete (Betoniteollisuus ry, 2020) is recycled. The process losses of the waste treatment plant are assumed to be negligible (C3). The remaining 20% of concrete are assumed to be sent to the landfill (C4).

Due to the recycling potential of concrete, they can be crushed and used as secondary raw material, which avoids the use of virgin raw materials. The 80 % of concrete going to waste processing is converted into secondary raw materials after recycling (D). However, Stranlite Synerg·Eco Standard are made from already recycled materials, we cannot claim any benefits from reuse and recycling, because that would be considered as a double accounting of benefits.

MANUFACTURING PROCESS

LIFE-CYCLE ASSESSMENT

CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation								
Raw materials	No allocation								
Packaging materials	No allocation								
Ancillary materials	Allocated by mass or volume								
Manufacturing energy and waste	Allocated by mass or volume								

AVERAGES AND VARIABILITY

Type of average	No averaging
Averaging method	Not applicable
Variation in GWP-fossil for A1-A3	0 %

There is no average result considered in this study since this EPD refers to one specific product produced in one production plant.

LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. The EPD Generator uses Ecoinvent v3.8, Plastics Europe, Federal LCA Commons and One Click LCA databases as sources of environmental data.

ENVIRONMENTAL IMPACT DATA

CORE ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
GWP – total ¹⁾	kg CO₂e	6.53E+00	9.26E-01	1.01E+00	8.47E+00	2.77E+00	3.98E+00	-2.37E+00	MND	MND	MND	MND	MND	MND	1.95E-01	4.61E-01	2.11E+00	2.23E-01	-1.07E+00
GWP – fossil	kg CO ₂ e	6.53E+00	9.26E-01	1.01E+00	8.47E+00	2.77E+00	3.98E+00	-2.37E+00	MND	MND	MND	MND	MND	MND	1.95E-01	4.61E-01	2.11E+00	2.23E-01	-1.07E+00
GWP – biogenic	kg CO₂e	0.00E+00	MND	MND	MND	MND	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00						
GWP – LULUC	kg CO₂e	8.45E-04	3.06E-04	1.32E-03	2.47E-03	3.82E-03	1.97E-03	0.00E+00	MND	MND	MND	MND	MND	MND	1.94E-05	1.73E-04	4.41E-03	2.11E-04	-1.47E-03
Ozone depletion pot.	kg CFC ₋₁₁ e	1.09E-07	2.26E-07	7.14E-08	4.06E-07	3.99E-07	2.40E-07	0.00E+00	MND	MND	MND	MND	MND	MND	4.16E-08	1.15E-07	6.10E-07	9.03E-08	-8.70E-08
Acidification potential	mol H†e	1.55E-02	4.03E-03	3.40E-03	2.30E-02	2.06E-02	1.67E-02	0.00E+00	MND	MND	MND	MND	MND	MND	2.02E-03	1.47E-03	1.88E-02	2.10E-03	-6.91E-03
EP-freshwater ²⁾	kg Pe	3.16E-05	6.04E-06	2.15E-05	5.92E-05	1.01E-04	3.16E-05	0.00E+00	MND	MND	MND	MND	MND	MND	6.45E-07	3.29E-06	1.89E-05	2.34E-06	-6.06E-05
EP-marine	kg Ne	3.41E-03	1.24E-03	6.99E-04	5.34E-03	7.03E-03	4.25E-03	0.00E+00	MND	MND	MND	MND	MND	MND	8.96E-04	3.24E-04	7.23E-03	7.26E-04	-1.50E-03
EP-terrestrial	mol Ne	3.94E-02	1.36E-02	8.16E-03	6.12E-02	7.74E-02	4.83E-02	0.00E+00	MND	MND	MND	MND	MND	MND	9.82E-03	3.59E-03	7.93E-02	7.99E-03	-1.95E-02
POCP ("smog") ³⁾	kg NMVOCe	9.73E-03	4.46E-03	2.05E-03	1.62E-02	2.16E-02	1.28E-02	0.00E+00	MND	MND	MND	MND	MND	MND	2.70E-03	1.41E-03	2.24E-02	2.32E-03	-5.01E-03
ADP-minerals & metals ⁴⁾	kg Sbe	4.92E-06	1.98E-06	1.09E-05	1.78E-05	1.26E-05	2.52E-04	0.00E+00	MND	MND	MND	MND	MND	MND	9.87E-08	1.13E-06	4.34E-06	5.13E-07	-1.04E-05
ADP-fossil resources	MJ	4.04E+00	1.44E+01	2.58E+01	4.43E+01	4.11E+01	2.91E+01	0.00E+00	MND	MND	MND	MND	MND	MND	2.62E+00	7.36E+00	4.13E+01	6.12E+00	-1.54E+01
Water use ⁵⁾	m³e depr.	3.51E-01	6.26E-02	2.23E-01	6.37E-01	6.27E-01	6.22E-01	0.00E+00	MND	MND	MND	MND	MND	MND	7.04E-03	3.40E-02	1.47E-01	1.94E-02	-2.04E+00

¹⁾ GWP = Global Warming Potential; 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e; 3) POCP = Photochemical ozone formation; 4) ADP = Abiotic depletion potential; 5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Particulate matter	Incidence	8.00E-08	1.32E-07	1.75E-08	2.29E-07	2.46E-07	2.34E-07	0.00E+00	MND	MND	MND	MND	MND	MND	5.42E-08	5.35E-08	1.68E-06	4.23E-08	-8.91E-08
Ionizing radiation ⁶⁾	kBq U235e	7.86E-02	7.31E-02	8.71E-01	1.02E+00	4.93E-01	1.77E-01	0.00E+00	MND	MND	MND	MND	MND	MND	1.20E-02	3.79E-02	1.91E-01	2.77E-02	-2.30E-01
Ecotoxicity (freshwater)	CTUe	4.17E+01	1.15E+01	1.60E+01	6.92E+01	4.18E+01	5.17E+01	0.00E+00	MND	MND	MND	MND	MND	MND	1.58E+00	6.12E+00	2.91E+01	3.99E+00	-1.94E+01
Human toxicity, cancer	CTUh	1.15E-03	3.14E-10	4.20E-10	1.15E-03	2.74E-09	4.59E-05	0.00E+00	MND	MND	MND	MND	MND	MND	6.04E-11	1.59E-10	9.10E-10	9.98E-11	-1.07E-09
Human tox. non-cancer	CTUh	1.42E-08	1.14E-08	1.24E-08	3.80E-08	3.87E-08	3.19E-08	0.00E+00	MND	MND	MND	MND	MND	MND	1.14E-09	6.23E-09	2.19E-08	2.61E-09	-1.99E-08
SQP ⁷⁾	-	3.84E+00	1.47E+01	1.11E+01	2.96E+01	3.10E+01	4.38E+01	0.00E+00	MND	MND	MND	MND	MND	MND	3.41E-01	8.57E+00	6.04E+01	1.31E+01	-1.48E+01

⁶⁾ EN 15804+A2 disclaimer for Ionizing radiation, human health. This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator; 7) SQP = Land use related impacts/soil quality.

USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Renew. PER as energy ⁸⁾	MJ	5.08E+00	1.72E-01	5.36E+00	1.06E+01	3.17E+00	2.35E+00	0.00E+00	MND	MND	MND	MND	MND	MND	1.50E-02	9.53E-02	4.34E-01	5.31E-02	-1.39E+00
Renew. PER as material	MJ	0.00E+00	MND	MND	MND	MND	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00						
Total use of renew. PER	MJ	5.08E+00	1.72E-01	5.36E+00	1.06E+01	3.17E+00	2.35E+00	0.00E+00	MND	MND	MND	MND	MND	MND	1.50E-02	9.53E-02	4.34E-01	5.31E-02	-1.39E+00
Non-re. PER as energy	MJ	1.29E+01	1.44E+01	2.58E+01	5.31E+01	4.11E+01	2.94E+01	0.00E+00	MND	MND	MND	MND	MND	MND	2.62E+00	7.36E+00	4.13E+01	6.12E+00	-1.54E+01
Non-re. PER as material	MJ	0.00E+00	MND	MND	MND	MND	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00						
Total use of non-re. PER	MJ	1.29E+01	1.44E+01	2.58E+01	5.31E+01	4.11E+01	2.94E+01	0.00E+00	MND	MND	MND	MND	MND	MND	2.62E+00	7.36E+00	4.13E+01	6.12E+00	-1.54E+01
Secondary materials	kg	4.37E+01	4.28E-03	2.52E-03	4.37E+01	4.79E-02	1.75E+00	0.00E+00	MND	MND	MND	MND	MND	MND	1.03E-03	2.07E-03	1.25E-02	1.29E-03	-1.70E-02
Renew. secondary fuels	MJ	5.80E-06	3.34E-05	1.91E-05	5.82E-05	1.39E-04	1.73E-05	0.00E+00	MND	MND	MND	MND	MND	MND	3.35E-06	1.83E-05	1.79E-04	3.36E-05	-1.21E-04
Non-ren. secondary fuels	MJ	0.00E+00	MND	MND	MND	MND	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00						
Use of net fresh water	m³	7.10E-03	1.77E-03	6.66E-03	1.55E-02	1.78E-02	7.94E-02	0.00E+00	MND	MND	MND	MND	MND	MND	1.59E-04	9.76E-04	2.85E-02	6.70E-03	-4.91E-02

⁸⁾ PER = Primary energy resources.

END OF LIFE – WASTE

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
Hazardous waste	kg	2.20E-02	1.60E-02	5.54E-02	9.34E-02	1.86E-01	1.03E-01	0.00E+00	MND	MND	MND	MND	MND	MND	3.51E-03	7.89E-03	5.45E-02	0.00E+00	-9.03E-02
Non-hazardous waste	kg	9.72E-01	2.50E-01	8.42E-01	2.06E+00	4.50E+00	3.30E+00	0.00E+00	MND	MND	MND	MND	MND	MND	2.46E-02	1.37E-01	6.95E-01	4.24E+01	-2.66E+00
Radioactive waste	kg	5.24E-05	9.97E-05	2.19E-04	3.71E-04	2.59E-04	1.35E-04	0.00E+00	MND	MND	MND	MND	MND	MND	1.84E-05	5.08E-05	2.78E-04	0.00E+00	-7.70E-05

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Components for re-use	kg	0.00E+00	MND	MND	MND	MND	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00						
Materials for recycling	kg	0.00E+00	MND	MND	MND	MND	MND	MND	0.00E+00	0.00E+00	1.69E+02	0.00E+00	0.00E+00						
Materials for energy rec	kg	0.00E+00	MND	MND	MND	MND	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00						
Exported energy	MJ	0.00E+00	MND	MND	MND	MND	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00						

ENVIRONMENTAL IMPACTS - EN 15804+A1, CML / ISO 21930

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Global Warming Pot.	kg CO₂e	8.56E+00	8.21E-01	9.96E-01	1.04E+01	2.73E+00	4.04E+00	-2.37E+00	MND	MND	MND	MND	MND	MND	1.93E-01	4.56E-01	2.08E+00	2.19E-01	-1.04E+00
Ozone depletion Pot.	kg CFC ₋₁₁ e	2.51E-07	1.60E-07	6.26E-08	4.73E-07	3.21E-07	1.99E-07	0.00E+00	MND	MND	MND	MND	MND	MND	3.30E-08	9.10E-08	4.83E-07	7.14E-08	-7.21E-08
Acidification	kg SO₂e	1.96E-02	2.87E-03	2.72E-03	2.52E-02	1.56E-02	1.31E-02	0.00E+00	MND	MND	MND	MND	MND	MND	1.44E-03	1.19E-03	1.39E-02	1.59E-03	-5.36E-03
Eutrophication	kg PO ₄ ³e	5.25E-03	6.30E-04	9.13E-04	6.80E-03	5.71E-03	3.56E-03	0.00E+00	MND	MND	MND	MND	MND	MND	3.35E-04	2.52E-04	3.16E-03	3.42E-04	-2.51E-03
POCP ("smog")	kg C₂H₄e	7.11E-04	1.06E-04	1.35E-04	9.52E-04	5.78E-04	5.05E-04	0.00E+00	MND	MND	MND	MND	MND	MND	3.16E-05	5.55E-05	4.64E-04	6.65E-05	-3.64E-04
ADP-elements	kg Sbe	1.90E-05	1.69E-06	1.09E-05	3.16E-05	1.24E-05	2.53E-04	0.00E+00	MND	MND	MND	MND	MND	MND	9.72E-08	1.10E-06	4.26E-06	5.05E-07	-1.03E-05
ADP-fossil	MJ	4.03E+01	1.29E+01	2.58E+01	7.90E+01	4.11E+01	3.04E+01	0.00E+00	MND	MND	MND	MND	MND	MND	2.62E+00	7.36E+00	4.13E+01	6.12E+00	-1.54E+01

ENVIRONMENTAL IMPACTS – GWP-GHG - THE INTERNATIONAL EPD SYSTEM

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
GWP-GHG ⁹⁾	kg CO₂e	6.53E+00	9.26E-01	1.01E+00	8.47E+00	2.77E+00	3.98E+00	- 2.37E+00	MND	MND	MND	MND	MND	MND	1.95E-01	4.61E-01	2.11E+00	2.23E-01	-1.07E+00

⁹⁾ This indicator includes all greenhouse gases excluding biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product as defined by IPCC AR 5 (IPCC 2013). In addition, the characterisation factors for the flows - CH4 fossil, CH4 biogenic and Dinitrogen monoxide - were updated in line with the guidance of IES PCR 1.2.5 Annex 1. This indicator is identical to the GWP-total of EN 15804:2012+A2:2019 except that the characterization factor for biogenic CO2 is set to zero.

VERIFICATION STATEMENT

VERIFICATION PROCESS FOR THIS EPD

This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with reference standard, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The digital background data for this EPD

Why does verification transparency matter? <u>Read more online</u>
This EPD has been generated by One Click LCA EPD generator, which has been verified and approved by the EPD Hub.

THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of the data collected and used in the LCA calculations, the way the LCA-based calculations have been carried out, the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and reference standard.

I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.

I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

Imane Uald lamkaddam, as an authorized verifier acting for EPD Hub Limited 16.08.2024

